

PIC16C774

PIC16C774 Rev. B Silicon Errata Sheet

The PIC16C774 (Rev. B) parts you have received conform functionally to the Device Data Sheet (DS30275**A**), except for the anomalies described below.

All of the problems listed here will be addressed in future revisions of the PIC16C774 silicon.

1. Module: VREF

If the VRH high voltage reference is enabled and also used as a reference source for the A/D converter, the VRHOEN bit (REFCON<5>) must be set. Since setting the VRHOEN bit connects the VRH reference to the RA3 pin, the TRISA<3> bit must be maintained set and the pin cannot be used for general purpose I/O.

The VRL low voltage reference does not function properly on parts with date codes earlier than 0012NNN, where the first two digits are the year and the second two are the work week. Laser marked parts are made after this date and have a functional VRL. In parts without functional VRL, the VRLEN (REFCON<6>) and VRLOEN (REFCON<4>) bits should be maintained cleared.

Work around

None.

2. Module: PORTE

The minimum VIH specification for PORTE (parameter D040) is 2.2 volts. The maximum VIL specification for PORTE (parameter D030A) is 0.6 volts.

Work around

None.

3. Module: BOR

The Brown-out Reset module's selection ranges have changed. Table 1 shows the new specifications.

Work around

None.

Date Codes Pertaining To This Issue:

All.

Note: When the manufacture date of a newer version of silicon is in production, the last date where this issue may occur will be specified.

TABLE 1: DC SPECIFICATION CHANGES FROM DATA SHEET

Param No.	Sym.	Cha	Characteristic		Tested Specification Characteristic		Da Spe	Units		
NO.				Min	Тур	Мах	Min	Тур	Max	
D005	VBOR	BOR Voltage	BORV<1:0> = 0100	2.35	—	2.80	2.5	_	2.66	V
			BORV<1:0> = 0101	2.55	—	3.02	2.7		2.86	V
			BORV<1:0> = 0110	3.95	—	4.71	4.2		4.46	V
			BORV<1:0> = 0111	4.23	—	5.05	4.5	_	4.78	V

4. Module: LVD

The Low Voltage Detect module's selection ranges have changed. Table 2 shows the new specifications.

Work around

None.

Date Codes Pertaining To This Issue:

All.

Note: When the manufacture date of a newer version of silicon is in production, the last date where this issue may occur will be specified.

TABLE 2: DC SPECIFICATION CHANGES FROM DATA SHEET

Param No.	Sym.	Cha	Characteristic		Specifi	cation	Da Spe	Units		
110.				Min	Тур	Max	Min	Тур	Мах	
D420	Vlvd	LVD Voltage	LVV<3:0> = 0100	2.35	—	2.80	2.5	—	2.66	V
			LVV<3:0> = 0101	2.55	—	3.02	2.7	—	2.86	V
			LVV<3:0> = 0110	2.64	—	3.14	2.8	—	2.98	V
			LVV<3:0> = 0111	2.83	—	3.37	3.0	—	3.2	V
			LVV<3:0> = 1000	3.11	—	3.71	3.3	—	3.52	V
			LVV<3:0> = 1001	3.29	—	3.93	3.5	—	3.72	V
			LVV<3:0>=1010	3.39	—	4.04	3.6	—	3.84	V
			LVV<3:0> = 1011	3.58	—	4.26	3.8	—	4.04	V
			LVV<3:0> = 1100	3.77	—	4.49	4.0	—	4.26	V
			LVV<3:0> = 1101	3.95	—	4.71	4.2	—	4.46	V
			LVV<3:0> = 1110	4.23	—	5.05	4.5	—	4.78	V

5. Module: Timer1

When Timer1 is running in Asynchronous mode and then disabled, data in the Timer1 register (TMR1) may become corrupted. Corruption occurs when the timer enable is turned off at the same instant that a ripple carry occurs in the timer module.

This issue only occurs in asynchronous operation. In synchronous operation, the relevant signals are latched with the CPU clock and the problem condition does not arise.

Work around

When Timer1 is configured to operate as an asynchronous counter, care must be taken that there is no incoming pulse while the module is being turned off. If an incoming pulse arrives while Timer1 is being turned off, the value of register TMR1 may become corrupted.

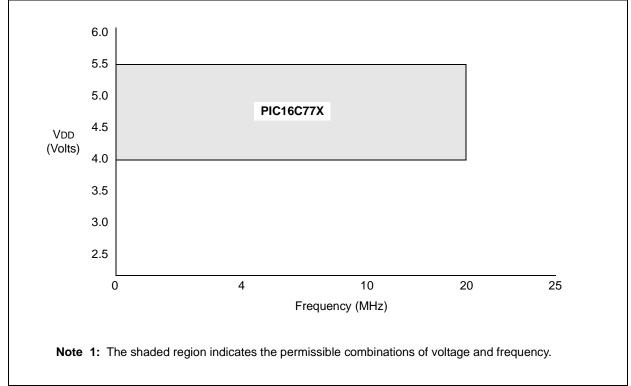
If an application requires that Timer1 be turned off, and if it is possible that Timer1 may receive an incoming pulse while being turned off, synchronize the external clock first by clearing the T1SYNC bit of register T1CON (T1CON<2>). Please note, however, that this may cause Timer1 to miss up to one count.

6. Module: A/D Converter

Exceptions have been observed in the differential linearity error specification (parameter A04), as listed in Table 15-9 of the Data Sheet.

No missing codes have been observed when using up to, and including, 11-bits of resolution. At 12-bits of resolution, up to four missing codes may occur. The missing codes will never be adjacent.

Work around


None.

Clarifications/Corrections to the Data Sheet:

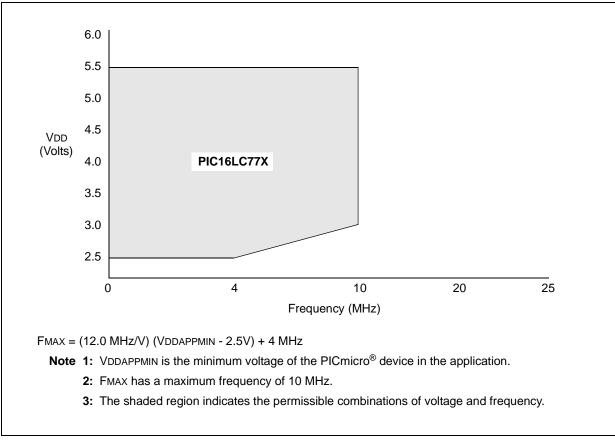
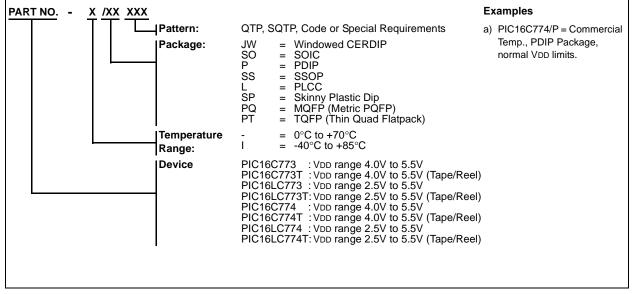
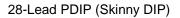

In the Device Data Sheet (DS30275**A**), the following clarifications and corrections should be noted.

 Table 15-1 in the Device Data Sheet (DS30275A) should be omitted. Figure 15-1 and Figure 15-2 below should be used to determine the operating voltages and frequencies for the devices.

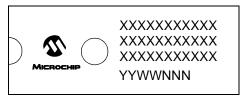


 The details of the new Product Identification System are given below. This information replaces the Product Identification System details given in the Device Data Sheet (DS30275A).

PIC16C774 PRODUCT IDENTIFICATION SYSTEM


To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

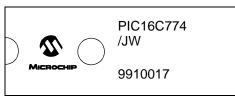
*JW devices are UV erasable and can be programmed to any device configuration. JW devices meet the electrical requirement of each oscillator type (including LC devices).


 The PIC16C77X devices contain new package marking information. The package marking details provided below replace those given in Section 17 of the Device Data Sheet (DS30275A).

17.1 Package Marking Information

28-Lead CERDIP Windowed

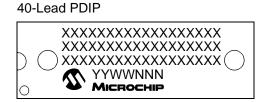
28-Lead SOIC



28-Lead SSOP

Example

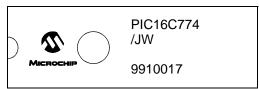
Example


Example

XXX YY WW NNN	Customer specific information* Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code

* Standard OTP marking consists of Microchip part number, year code, week code and traceability code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

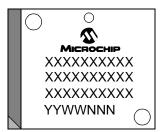
Package Marking Information (Cont'd)


40-Lead CERDIP Windowed

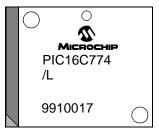
Example

Example

44-Lead TQFP


Example

44-Lead MQFP


44-Lead PLCC

Example

Example

4. The A/D module differential current has been improved to the values shown in Table 3.

TABLE 3:	DC SPECIFICATION CHANGES FROM DATA SHEET

Param No.	Sym.	Characteristic		New Specification		Data Sheet Specification			Units	Conditions	
NO.				Min	Тур	Мах	Min	Тур	Max		
D026	ΔIAD	Module Differential Current (Note 5)									
		A/D Converter	PIC16 C XXX	—	10	_	_	300	_	μA	VDD = 4.0V; A/D on, not converting
			PIC16 LC XXX	_	10	_	—	300	—	μA	VDD = 3.0V; A/D on, not converting

Note 5: The ∆ current is the additional current consumed when the peripheral is enabled. This current should be added to the base (IPD or IDD) current.

5. The Voltage Reference module line regulation specification has been changed to the values shown in Table 4. The new specification is shown in **bold**.

TABLE 4: DC SPECIFICATION CHANGES FROM DATA SHEET

Param No.	Sym.	Characteristic	New Specification			Data Sheet Specification			Units	
110.			Min	Тур	Max	Min	Тур	Max		
D407	$\Delta VOUT/\Delta VDD$	Line Regulation	—	1000	—		—	50	μV/V	

6. The Low Voltage Detect module supply current specification has been changed to the values shown in Table 5.

TABLE 5: DC SPECIFICATION CHANGES FROM DATA SHEET

Param No.	Sym.	Characteristic	New Specification			Data Sheet Specification			Units
NO.			Min	Тур	Max	Min	Тур	Max	
D421	Δ ILVD	LVD Supply Current	—	10	TBD	_	10	20	μΑ

7. The Brown-out Reset module supply current specification has been modified to the values shown in Table 6.

TABLE 6: DC SPECIFICATION CHANGES FROM DATA SHEET

Param No.	Sym.	Characteristic	New Specification			Data Sheet Specification			Units	
NO.			Min	Тур	Max	Min	Тур	Max		
D022A	Δ Ibor	Supply Current	—	10	TBD	_	10	20	μΑ	

8. The A/D clock source bits (ADCS1:ADCS0) have had their operation modified. See Register 1 for a new definition of the ADCS1 and ADCS0 bits.

Figure 1 shows how the TAD time is determined based upon the selection of the ADCS<1:0> bits and the source of VREF+ and VREF-. When VREF+ or VREF- comes from the internal voltage reference (VRH or VRL), then the required TAD time is increased by a factor of eight (see electrical specification parameter #130A).

The clock source selected by the ADCS<1:0> bits is divided by eight when an internally generated reference voltage is used as reference to the A/D module. This automatically addresses the requirement for the TAD time, when the internal voltage reference is used as the A/D voltage reference.

Note: Electrical specification parameter #130A is currently specified in the clarifications and corrections section of the Device Errata Sheet.

FIGURE 1: A/D CLOCK SOURCE BLOCK DIAGRAM

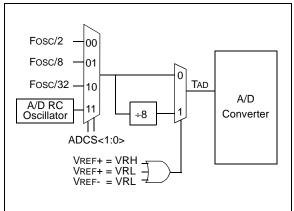


Table 7 shows the maximum device frequency depending on the A/D clock source selected.

REGISTER 1: A/D CONTROL REGISTER 0 (ADCON0)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	CHS3	ADON
bit 7							bit 0

bit 7-6 ADCS<1:0>: A/D Conversion Clock Select bits

	A/D Clock Sou	irce (TAD) =
ADCS<1:0>	When VCFG<2:0> = 000, 001, 011 or 101	When VCFG<2:0> = 010, 100, 110 or 111
00	2 Tosc	16 Tosc
01	8 Tosc	64 Tosc
10	32 Tosc	256 Tosc
11	A/D RC (1 MHz max)	A/D RC (125 kHz max)

bit 5-0 No change to the operation of these bits

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented I	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

TABLE 7: MAXIMUM DEVICE FREQUENCY vs. A/D CLOCK SOURCE

	A/D Clock So	urce (TAD)						
ADCS<1:0>	$\label{eq:When A/D Reference is} \ensuremath{Selected}\xspace$ selected as External Reference or Analog Supply $\ensuremath{TAD}\xspace \geq 1.6\ensuremath{\mu s}\xspace$	Maximum Device Frequency						
0 0	2 Tosc	16 Tosc	1.25 MHz					
01	8 Tosc	64 Tosc	5 MHz					
10	32 Tosc	256 Tosc	20 MHz					
11	A/D RC	A/D RC	(1,3)					
 Note 1: The A/D RC source has a typical TAD time of 4 μs for VDD > 3.0V, but can vary between 2 μs and 6 μs. 2: The A/D RC source has a typical TAD time of 32 μs for VDD > 3.0V, but can vary between 16 μs and 48 μs. 3: When the device frequency is greater than 1 MHz, the A/D RC clock source is only recommended if the conversion will be performed during SLEEP. 								

9. The 12-bit A/D module requires some new timing specifications for the A/D clock period (minimum TAD time). These new specifications are for when the reference voltage for the A/D is selected as either the VRH or VRL reference voltage. The new specifications are shown in **bold** in Table 8.

Parm No.	Sym	Characteristic		New Specification			Data Sheet Specification			Units	Condition	
				Min	Тур	Max	Min	Тур	Max			
130	TAD	A/D Clock Period	Clock from Fosc	1.6			1.6	—		μs	$VREF \ge 2.5V$	
				TBD			TBD			μs	VREF full range	
				12.8	_	—	N.A.	N.A.	N.A.	μs	VRH or VRL used as A/D reference voltage, VDD = 5.0V	
			Clock from internal A/D RC oscillator ADCS<1:0> = 11	3.0	6.0	9.0	3.0	6.0	9.0	μs	VDD = 2.5V	
				2.0	4.0	6.0	2.0	4.0	6.0	μs	VDD = 5.0V	
				16	32	48	N.A.	N.A.	N.A.	μs	VRH or VRL used as A/D reference voltage, VDD = 5.0V	

TABLE 8: DC SPECIFICATION CHANGES FROM DATA SHEET

10. The output voltage specification in the DC Characteristics section has been modified to the values shown in Table 9. The new values are shown in **bold**.

TABLE 9: DC SPECIFICATION CHANGES FROM DATA SHEET

Param No.	Characteristic	Symbol	New	Specific	ation	Data Sheet Specification			Units
110.			Min	Тур	Max	Min	Тур	Max	
D400	Output Voltage	VRL	1.9	2.048	2.2	2.0	2.048	2.1	V
		VRH	4.0	4.096	4.3		4.096	4.2	V

REVISION HISTORY

Rev C Document (1/01)

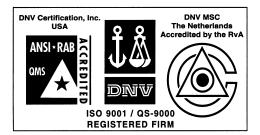
Item 10 and Table 9, concerning output voltage specifications, were added.

Rev D Document (2/01)

Issues 5 (Timer1) and 6 (A/D Converter) were added (page 3).

"All rights reserved. Copyright © 2001, Microchip Technology Incorporated, USA. Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights. The Microchip logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other trademarks mentioned herein are the property of their respective companies. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights."

Trademarks


The Microchip name, logo, PIC, PICmicro, PICMASTER, PIC-START, PRO MATE, KEELOQ, SEEVAL, MPLAB and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

Total Endurance, ICSP, In-Circuit Serial Programming, Filter-Lab, MXDEV, microID, *Flex*ROM, *fuzzy*LAB, MPASM, MPLINK, MPLIB, PICDEM, ICEPIC, Migratable Memory, FanSense, ECONOMONITOR, SelectMode and microPort are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Term Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2001, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEEL00® code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: http://www.microchip.com

Rocky Mountain 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7966 Fax: 480-792-7456

Atlanta 500 Sugar Mill Road, Suite 200B Atlanta, GA 30350 Tel: 770-640-0034 Fax: 770-640-0307 Austin

Analog Product Sales 8303 MoPac Expressway North Suite A-201 Austin, TX 78759 Tel: 512-345-2030 Fax: 512-345-6085

Boston 2 Lan Drive, Suite 120 Westford, MA 01886

Tel: 978-692-3848 Fax: 978-692-3821 Boston

Analog Product Sales Unit A-8-1 Millbrook Tarry Condominium 97 Lowell Road Concord, MA 01742 Tel: 978-371-6400 Fax: 978-371-0050

Chicago 333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075

Dallas

4570 Westgrove Drive, Suite 160 Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924

Dayton Two Prestige Place, Suite 130 Miamisburg, OH 45342 Tel: 937-291-1654 Fax: 937-291-9175

Detroit Tri-Atria Office Building 32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260

Los Angeles 18201 Von Karman, Suite 1090 Irvine, CA 92612 Tal: 040 262 4989 Faw 040 262 42

Tel: 949-263-1888 Fax: 949-263-1338 Mountain View

Analog Product Sales 1300 Terra Bella Avenue Mountain View, CA 94043-1836 Tel: 650-968-9241 Fax: 650-967-1590 New York

150 Motor Parkway, Suite 202 Hauppauge, NY 11788 Tel: 631-273-5305 Fax: 631-273-5335 **San Jose** Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955 **Toronto**

6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia Microchip Technology Australia Pty Ltd Suite 22, 41 Rawson Street Epping 2121, NSW Australia Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing Microchip Technology Beijing Office Unit 915 New China Hong Kong Manhattan Bldg. No. 6 Chaoyangmen Beidajie Beijing, 100027, No. China Tel: 86-10-85282100 Fax: 86-10-85282104 China - Shanghai Microchip Technology Shanghai Office Room 701, Bldg. B Far East International Plaza No. 317 Xian Xia Road Shanghai, 200051 Tel: 86-21-6275-5700 Fax: 86-21-6275-5060 Hong Kong Microchip Asia Pacific RM 2101, Tower 2, Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 India Microchip Technology Inc. India Liaison Office **Divyasree Chambers** 1 Floor, Wing A (A3/A4) No. 11, O'Shaugnessey Road Bangalore, 560 025, India Tel: 91-80-2290061 Fax: 91-80-2290062 Japan Microchip Technology Intl. Inc. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122

ASIA/PACIFIC (continued)

Korea

Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea Tel: 82-2-554-7200 Fax: 82-2-558-5934 Singapore Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore, 188980 Tel: 65-334-8870 Fax: 65-334-8850 Taiwan Microchip Technology Taiwan 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

Denmark

Microchip Technology Denmark ApS **Regus Business Centre** Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910 France Arizona Microchip Technology SARL Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - ler Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 **Germany** Arizona Microchip Technology GmbH Gustav-Heinemann Ring 125 D-81739 Munich, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44 Germany Analog Product Sales Lochhamer Strasse 13 D-82152 Martinsried, Germany Tel: 49-89-895650-0 Fax: 49-89-895650-22 Italv Arizona Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy Tel: 39-039-65791-1 Fax: 39-039-6899883 United Kingdom Arizona Microchip Technology Ltd. 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44 118 921 5869 Fax: 44-118 921-5820

01/30/01

All rights reserved. © 2001 Microchip Technology Incorporated. Printed in the USA. 2/01

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, except as maybe explicitly expressed herein, under any intellectual property rights. The Microchip logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other trademarks mentioned herein are the property of their respective companies.